Universal Chiplet Interconnect Express TM (UCle TM): An open standard for innovations at package level

Dr. Debendra Das Sharma

Intel Senior Fellow and Chief Architect of I/O Technology and Standards Intel Corporation

Agenda

- Introduction to UCIe
- On-Package Interconnects: Opportunities and Challenges
- Universal Chiplet Interconnect Express (UCIe): An Open Standard for Chiplets
- Future Directions and Conclusions

100+ Member Companies and growing!

Board Members

Leaders in semiconductors, packaging, IP suppliers, foundries, and cloud service providers are joining together to drive

The open chiplet ecosystem.

JOIN US!

UCIe Consortium is open for membership

- UCIe Consortium welcomes interested companies and institutions to join the organization at the Contributor and Adopter level.
- UCIe was founded in March 2022, incorporated in June 2022. Two levels of memberships: Contributor and Adopter

Contributor Membership

- Access the Final Specifications (ex: 1.0, 1.1, 2.0, etc.)
- Implement with the IP protections as outlined in the Agreements
- Right to attend Corporation trade shows or other industry events as determined by the Board
- Participate in the technical working groups
- Influence the direction of the technology
- Access the intermediate (dot level) specifications
- Election to get to the Promoter Class/ Board every year when the term of half the board completes

Adopter Membership

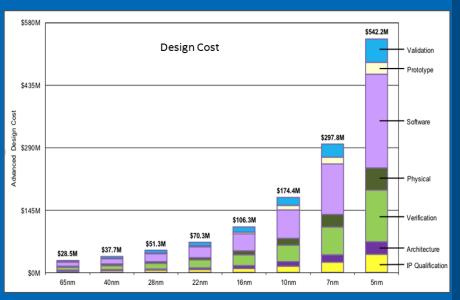
- Access the Final Specifications (ex: 1.0, 1.1, 2.0, etc.), but not intermediate level specifications
- Implement with the IP protections as outlined in the Agreements
- Right to attend Corporation trade shows or other industry events as determined by the Board

Agenda

- Introduction to UCle
- On-Package Interconnects: Opportunities and Challenges
- Universal Chiplet Interconnect Express (UCIe): An Open Standard for Chiplets
- Future Directions and Conclusions

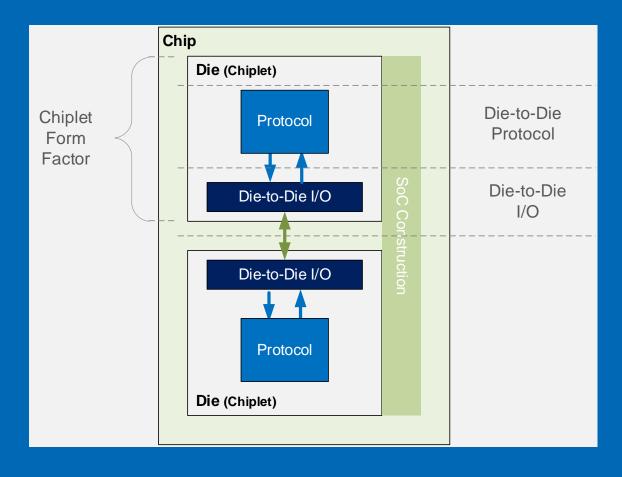
Moore Predicted "Day of Reckoning"

"It may prove to be more economical to build large systems out of smaller functions, which are separately packaged and interconnected."



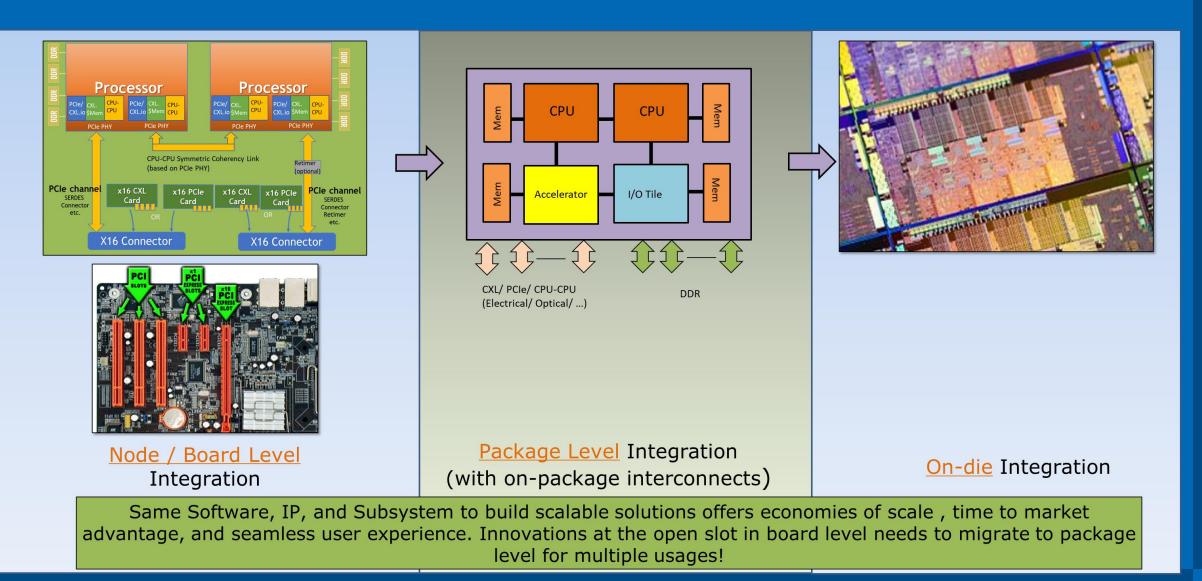
-Gordon E. Moore

Example of the components on to integrated circuits. Electronics, Volume 38, Number 8, April 19, 1965.


Drivers for On-Package Chiplets

- Reticle Limit, yield optimization, scalable performance
 - Same dies on package (Scale-up)
- Increasing design costs at leading edge process nodes
 - Die-disaggregated dies across different nodes
 - Use new process node for advanced functionality
- Time to Market (Late binding)
- Custom silicon for different customers leveraging a base product
 - E.g., Different acceleration functions with common compute
- Different process nodes optimized for different functions
 - E.g., Memory, logic, analog, co-packaged optics
- High power-efficient bandwidth with low-latency access (e.g., HBM memory)

Source: IBS (as cited in IEEE Heterogeneous Integration Roadmap)


Components of Chiplet Interoperability

Chiplet Form Factor

- Die size
- Bump location
- Power delivery
- Thermal characteristics
- SoC Construction (Application Layer)
 - SoC Reset
 - Initialization (e.g., fuses)
 - Register access
 - Security
- Die-to-Die Protocols (Data Link to Transaction Layer)
 - Link Layer, transaction Layer, etc.: PCle/CXL/Raw/....
 - Internal Interface standardization for plug and play IPs
- Die-to-Die I/O (Physical Layer)
 - Bump arrangement and characteristics
 - Electrical & thermal characteristics
 - Substrate or interposer characteristics
 - Length budget, pJ/bit, bit error rate, ...
 - Reset, clocking, initialization, and data transfer
 - Test and repair
 - Technology transition -> multiple bump arrangement/ frequency

Design Choice: Seamless Integration from Node → Package → On-die enables Reuse, Better User Experience

HPCA HiPChips Workshop 2023 intel.

Universal Chiplet Interconnect Express (UCIe):

An Open Standard for Chiplets

Guiding principles of UCIe

- 1. Open Ecosystem with Plug-and-play
- 2. Backward compatible evolution when appropriate to ensure investment protection
- 3. Best power, performance, and cost metrics across the industry applicable across the entire compute continuum
- 4. Continuously innovate to meet the needs of evolving compute landscape

(Leveraging decades of experience driving successful industry standards at the board level: PCIe, CXL, USB, etc.)

Motivation for UCle

OPEN CHIPLET: PLATFORM ON A PACKAGE High-Speed Standardized Chip-to-Chip Interface (UCIe) 20X I/O Performance at 1/20th Power vs off-package SerDes at Launch Gap more prominent with Customer IP & better on-package **Customized Chiplets** technologies in future Sea of Cores (heterogeneous) Memory Advanced 2D/2.5D/3D **Packaging** Heterogeneous Integration Fueled by an Open Chiplet Ecosystem (Mix-and-match chiplets from different process nodes / fabs / companies / assembly)

Align Industry around an open platform to enable chiplet based solutions

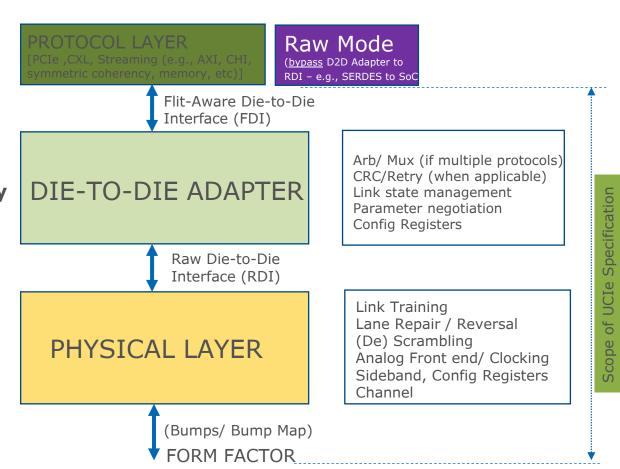
- Enables SoC construction that exceeds maximum reticle size
 - Package becomes new System-on-a-Chip (SoC) with same dies (Scale Up)
- Reduces time-to-solution (e.g., enables die reuse)
- Lowers portfolio cost (product & project)
 - Enables optimal process technologies
 - Smaller (better yield)
 - Reduces IP porting costs
 - Lowers product SKU cost
- Enables a customizable, standard-based product for specific use cases (bespoke solutions)
- Scales innovation (manufacturing/ process locked IPs)

HPCA HiPChips Workshop 2023 intel

UCle: Key Metrics and Adoption Criteria

Key Performance Indicators

- Bandwidth density (linear & area)
 - Data Rate & Bump Pitch
- Energy Efficiency (pJ/b)
 - Scalable energy consumption
 - Low idle power (entry/exit time)
- Latency (end-to-end: Tx+Rx)
- Channel Reach
 - Technology, frequency, & BER
- Reliability & Availability
- Cost: Standard vs advanced packaging


Factors Affecting Wide Adoption

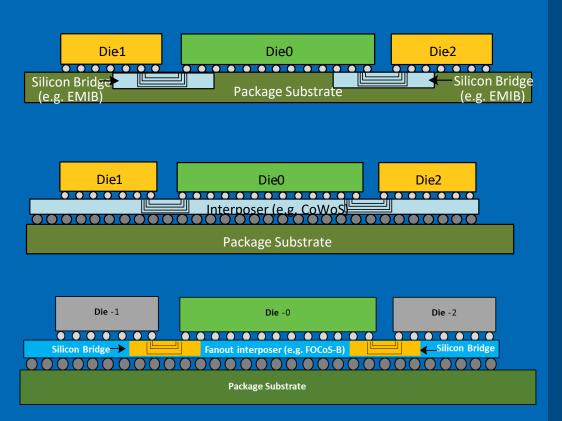
- Interoperability
 - Full-stack, plug-and-play with existing s/w
 - Different usages/segments ubiquity
- Technology
 - Across process nodes & packaging options
 - Power delivery & cooling
 - Repair strategy (failure/yield improvement)
 - Debug controllability & observability
- Broad industry support / Open ecosystem
 - Learnings from other standards efforts

UCIe is architected and specified from the ground-up to deliver the best KPIs while meeting wide adoption criteria

UCIe 1.0 Specification

- Layered Approach with industry-leading KPIs
- Physical Layer: Die-to-Die I/O
- Die to Die Adapter: Reliable delivery
 - Support for multiple protocols: bypassed in raw mode
- Protocol: CXL/PCIe and Streaming
 - CXL™/PCIe® for volume attach and plug-and-play
 - SoC construction issues are addressed w/ CXL/PCIe
 - CXL/PCIe addresses common use cases
 - I/O attach, Memory, Accelerator
 - Streaming for other protocols
 - Scale-up (e.g., CPU/ GP-GPU/Switch from smaller dies)
 - Protocol can be anything (e.g., AXI/CHI/SFI/CPI/ etc)
- Well defined specification: interoperability and future evolution
 - Configuration register for discovery and run-time
 - control and status reporting in each layer
 - transparent to existing drivers
 - Form-factor and Management
 - Compliance for interoperability
 - Plug-and-play IPs with RDI/ FDI interface

UCle 1.0: Supports Standard and Advanced Packages

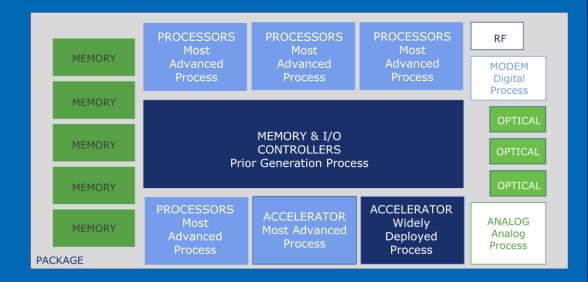


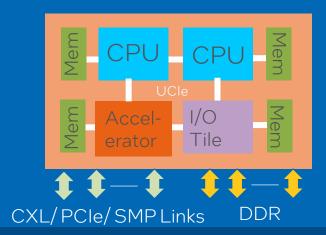
(Standard Package)

Standard Package: 2D – cost effective, longer distance

Advanced Package: 2.5D – power-efficient, high bandwidth density

Dies can be manufactured anywhere and assembled anywhere – can mix 2D and 2.5D in same package – Flexibility for SoC designer

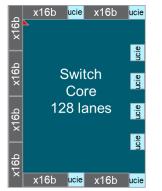


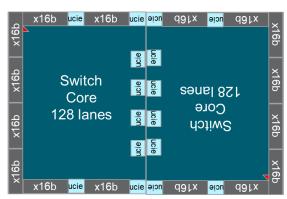

(Multiple Advanced Package Options)

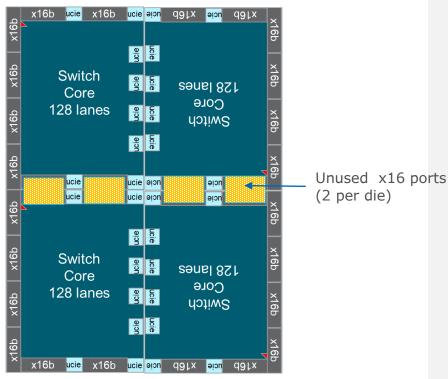
One UCIe 1.0 Spec covers both type of packaging options

UCIe Usage Model: SoC at Package Level

- SoC as a Package level construct
 - Standard and/ or Advanced package
 - Homogeneous and/or heterogeneous chiplets
 - Mix and match chiplets from multiple suppliers
- Across segments: Hand-held, Client,
 Server, Workstation, Comms, HPC, etc
 - Similar to PCIe/ CXL at board level

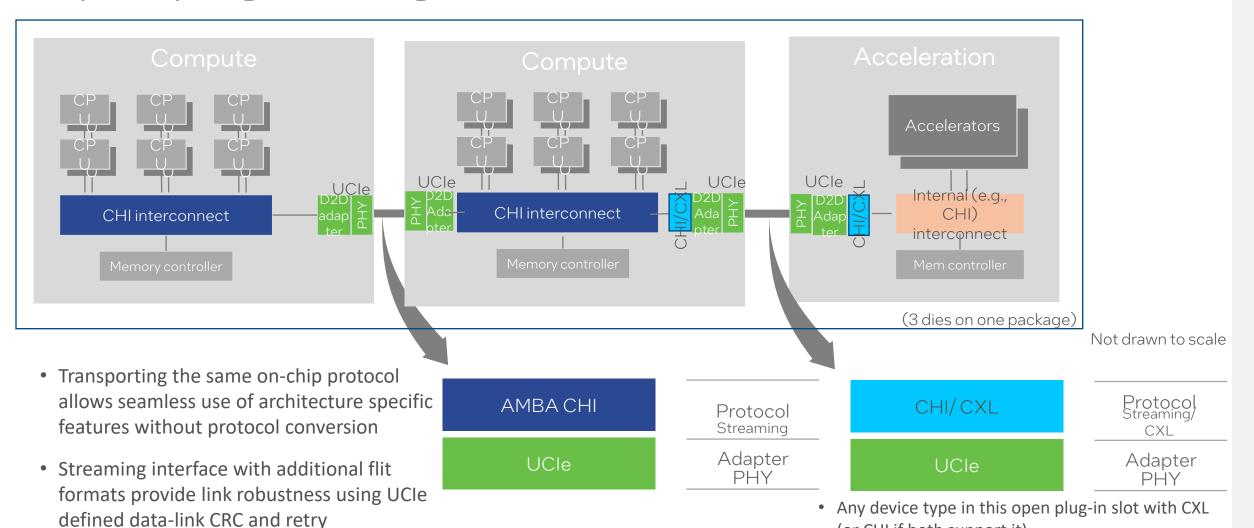





- Need large radix CXL switches challenges: reticle limit, cost, etc.
- UCIe based Chiplets should help with scalable products
- 64G Gen6 x16b CXL links
- UCIe as d2d interconnect while this is a scale-up CXL switch, a switch vendor may prefer to have their on-die interconnect protocol be transported over UCIe rather than create a hierarchy of switches which will not work for CXL 2.0 tree-based topology

Medium-sized CXL Switch (256 lanes)

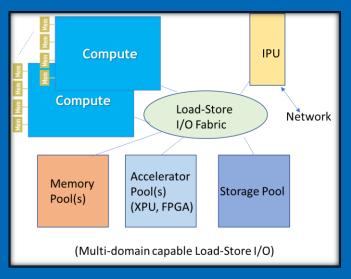
Large CXL switch (512 lanes)

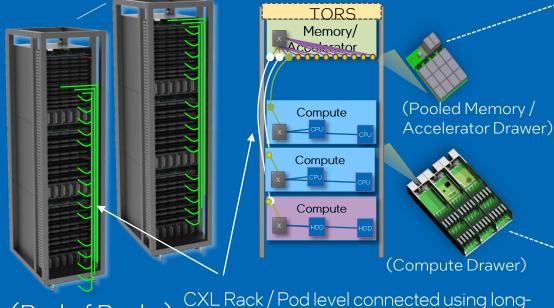

One can construct CPUs (low, medium, large core-count CPUs) from smaller dies connected through UCIe using the same principle

Here the UCIe PHY and D2D adapter will carry the packetized version of internal CPU interconnect fabric

Ack: Nathan Kalyanasundaram

Example Scale-up Package using Streaming and open-plug-in using PCIe/CXL

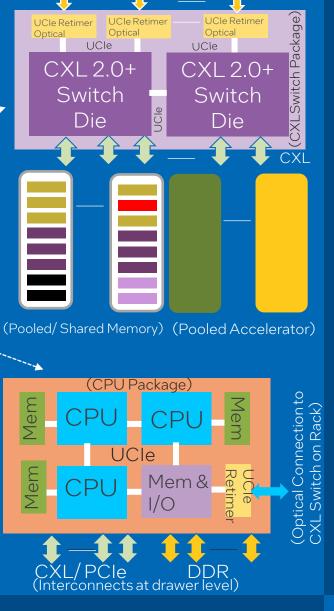



Ack: Marvin Denman, Bruce Mathewson, Francisco Socal, Durgesh Srivastava, Dong Wei

(or CHI if both support it)

UCle Usage: Off-Package Connectivity with UCle Retimers

(Vision: Load-Store I/O (CXL) as the fabric across the Pod providing low-latency and high bandwidth resource pooling/sharing as well as message passing)


(Physical Connectivity using UCIe-Retimer based co-packaged optics)

reach media (Electrical/Optical/..) through

UCle Retimers (e.g., co-packaged optics)

Rack/Pod Level resource pooling/sharing with UCIe

(Pod of Racks)

(Optical connections: Intra-Rack and Pod)

intel

UCIe 1.0: Characteristics and Key Metrics

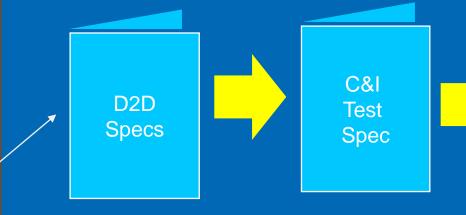
CHARACTERISTICS	STANDARD PACKAGE	ADVANCED PACKAGE	COMMENTS
Data Rate (GT/s)	4, 8, 12, 16, 24, 32		Lower speeds must be supported -interop (e.g., 4, 8, 12 for 12G device)
Width (each cluster)	16	64	Width degradation in Standard, spare lanes in Advanced
Bump Pitch (um)	100 - 130	25 - 55	Interoperate across bump pitches in each package type across nodes
Channel Reach (mm)	<= 25	<=2	

KPIs / TARGET FOR KEY METRICS	STANDARD PACKAGE	ADVANCED PACKAGE	COMMENTS
B/W Shoreline (GB/s/mm)	28 - 224	165 - 1317	Conservatively estimated: AP: 45u; Standard: 110u; Proportionate to data rate (4G - 32G)
B/W Density (GB/s/mm²)	22-125	188-1350	
Power Efficiency target (pJ/b)	0.5	0.25	
Low-power entry/exit latency	0.5ns <=16G, 0.5-1ns >=24G		Power savings estimated at >= 85%
Latency (Tx + Rx)	< 2ns		Includes D2D Adapter and PHY (FDI to bump and back)
Reliability (FIT)	0 < FIT (Failure In Time) << 1		FIT: #failures in a billion hours (expecting ~1E-10) w/ UCIe Flit Mode

UCIe 1.0 delivers the best KPIs while meeting the projected needs for the next 5-6 years. Wide industry leader adoption spanning semiconductor, manufacturing, assembly, & cloud segments.

Ingredients of broad inter-operable chiplet ecosystem

Broad Market Manufacturing, Packaging and Test


Chiplets & **Chiplet Based Product Attach Points**

Thriving Chiplet Ecosystem

IPs, VIPs, Tools, and Methodologies

Die-to-Die Open Industry Standards w/ compelling KPIs across wide usages

Die-to-Die

Well-defined Specs

(Electrical, Logical, Protocol (e.g., PCIe/CXL) Software, Form-Factor. Management)

Test criteria based on Specs

(Test Definitions. Pass/Fail Criteria: Electrical, Logical, Protocol, Software)

Test H/W & S/W Validates

And Procedures

Test criteria

- Compliance
- Interoperability

20

Predictable path to design compliance with UCIe

intel HPCA HiPChips Workshop 2023

Future Directions and Conclusions

Chiplets and D2D interface are essential to the compute continuum

 Power-efficient performance, yield optimization, different functions, custom solutions, cost-effective

UCIe standardization will propel the development an open ecosystem

- Open plug-and-play "slot" at package level will unleash innovations
- Evolution needs to track the underlying packaging technology to deliver compelling metrics
- Form-factor, New Protocols, and manageability are some other areas for innovation

The open chiplet journey with UCIe just started! Join us in what will be an exciting journey for decades!